
David C. Wyld et al. (Eds): MLSC, ITCSS, ACSTY, SOFE, NATP, BDAB - 2023

pp. 01-19, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.130201

MICAM: VISUALIZING FEATURE EXTRACTION

OF NONNATURAL DATA

Randy Klepetko and Ram Krishnan

Department of Electrical and Computer Engineering

University of Texas at San Antonio, San Antonio, Texas, USA

ABSTRACT

Convolutional Neural Networks (CNN) continue to revolutionize image recognition technology

and are being used in non-image related fields such as cybersecurity. They are known to work

as feature extractors, identifying patterns within large data sets, but when dealing with

nonnatural data, what these features represent is not understood. Several class activation map

(CAM) visualization tools are available that assist with understanding the CNN decisions when

used with images, but they are not intuitively comprehended when dealing with nonnatural

security data. Understanding what the extracted features represent should enable the data

analyst and model architect tailor a model to maximize the extracted features while minimizing

the computational parameters. In this paper we offer a new tool Model integrated Class

Activation Maps, (MiCAM) which allows the analyst the ability to visually compare extracted

feature intensities at the individual layer detail. We explore using this new tool to analyse

several datasets. First the MNIST handwriting data set to gain a baseline understanding. We
then analyse two security data sets: computers process metrics from cloud based application

servers that are infected with malware and the CIC-IDS-2017 IP data traffic set and identify

how re-ordering nonnatural security related data affects feature extraction performance and

identify how reordering the data affect feature extraction performance.

KEYWORDS

Convolutional Neural Networks, Security, Malware Detection, Visualizations, Deep Learning

1. INTRODUCTION

Improvements in CNN have achieved better than human performance in computer image

recognition [1]. They also have applications in non-image related research. Other sources of data
include text [2], sound [3], and in the medical diagnostics of DNA [4]. These are examples where

the data is organized in a grid like fashion by nature. But what about cases where the data wasn't

ordered by natural phenomena? Sensors on an automated vehicle [5] for example, does the order
matter? In most “nonnatural” applications the grid order is defined by some man made structure,

usually defined by an arbitrary specification. The term “nonnatural” is for those data ordering

schemes not defined by nature, as opposed “unnatural” which infers the “supernatural”.

Using CNN in detecting cyber-security issues has shown significant interest. Raw IP traffic [6,

7] computer process metrics [8], and industrial sensors [9] are all data sets where researchers are

evaluating CNN use in security. CNN are successful as they identify patterns from large data
sets to extract features. CNN are often applied as a feature extractor source which is supplied as

the input stage to decision network such as a densely connected, recurrent, or another machine

learning procedure. To maximize the patterns detected, order of the grid supplied to a CNN

should be of concern when it was arbitrarily defined.

http://airccse.org/cscp.html
http://airccse.org/csit/V13N02.html
https://doi.org/10.5121/csit.2023.130201

2 Computer Science & Information Technology (CS & IT)

In our previous research we showed that using the structural order in detecting malware using
computer process metrics is not preferred when training a shallow or deep CNN model if high

accuracy and precision are desired. We found that using statistical relationships as a basis for

order does improve performance. We showed that grouping our data points created artificial

objects that most CNN models could better identify as malware features. Do these finding hold
true when analysing raw IP data traffic?

CNN models consist of various layers each performing a specific task. Some run convolutions
via a series of filters, some pool data points together, while others perform mathematical

operations over either one or a pair of grids. Comprehending what could be going on within these

“black boxes” is improved with visualization techniques that let the user by eyesight understand
what the network is doing.

By providing transparency and an explanation [10] as to the network parameter intensities they

assist the researcher in all stages of the network development life cycle. Early in model
construction visualizations provide failure details letting the engineer to see how performance is

affected by model changes. Visualizing the hidden layers enhance confidence that the model is

identifying a proper set of features during network maturity. As the network exceeds human
performance, the visualization tools provide a computer instructor, teaching novel ways of

examining the data to the researcher.

A number of visualization tools have been created to assist in the engineering and development of

CNN. Some image generating tools create graphs to provide a higher level understanding of the

data flow within the model. Other visualization tools provide histograms of the parameters as

they adjust over the training period. One important class of visualization tools are classification
response graphs which are designed to show the how responsive a pixel is to that particular

classification made on a tested sample. These include Salience and CAM graphs. Most of these

latter tools apply well with image data, but are not as well suited for data that is not visual in
nature like cyber-security. These novel cases is where this research is focused. To find the

patterns that the CNN layers are extracting from non-natural security data as features, we built a

better visualization tool.

The contributions of this paper are:

 Present a new visualization tool, Model integrated Class Activation Maps (MiCAM), a

confluence of several visualization tools, and show how MiCAM assists in identifying
feature extraction response.

 Test previous defined ordering algorithms with a new security data set, raw IP traffic

from CIC-IDS-2017, showing again that statistical correlation provides a better than

randomly ordered performance.

The remainder of the paper is organized as follows: Section 2 discusses related work

using CNN with nonnatural data and a background on visualization tools. Section 3

outlines the methodology including a description of MiCAM and data organization.
Section 4 describes the analysis procedure and evaluation results. Section 5 summarizes

and concludes this paper.

Computer Science & Information Technology (CS & IT) 3

2. RELATED WORK

2.1. Convolutional Neural Networks and NonnaturalData

CNN have matured to where they have many applications, beyond the recognition of images.
Their ability is to identify patterns in large data sets when that data can be arraigned in a grid.

For instance, in the analysis of tire tread using the parameters measured during the manufacturing

process. Lihao and Yanni [11] with eleven metrics sampled from four manufacturing levels, they
arraigned a 4x11 matrix and were able to identify faulty tires with a 94% accuracy.

Golinko et al. in [12] used a one dimensional CNN as a feature extractor front for other machine

learning algorithms (k-Nearest Neighbour with k=1, Support Vector Machine, and Random
Forest), examining if the ordering of nonnatural ``Generic" source data for the CNN has a

performance impact on the final classifying algorithm. They found that using statistical

correlation as a method for identifying relationships of adjacent data performed well, but not pre-
ordering the data for CNN feature extraction was detrimental. Using a correlation ordering

scheme offered improvement in most cases, especially for kNN and SVN, improving accuracy

from 76% with no feature extraction to 82% if the data points were ordered by correlation prior to

CNN feature extraction.

In a collision detection systemPark, et. al. [13] used information from robotic sensors and

actuators creating 66 data points. Testing both a one-dimensional CNN and a Support Vector
Machine Regression they were able to show that the CNN would perform better if it trained with

enough data, but the SVMR performed better with less training.

With cross-related sensor data (local speed, GPS location, and accelerometer) from automated

vehicles, Van Wyk, et. al. [5] used an analyser to identify whenever any of the sensors behaved

anomalously. The different analysers tested included a Kalman Filter, CNN, and a CNN-KF

hybrid. Each had its unique benefits.

2.2. Convolutional Neural Networks and Security

CNNs have found value in cyber-security applications. Their ability to find patterns instead of

statically looking for distinct signatures provide feature extraction from large data sets and using

the algorithm's nonlinear space enables the dynamic/online detection of zero-day attacks. These
data sources are usually nonnatural.

From hypervisors in a cloud environment Abdelsalem et al. [8] places process metrics as they are
reported into a grid as they look for malware as it is injected into virtual machines. This produced

a set of 35 metrics that were captured per time segment for every running process. They were

supplied to a Lenet-5 [14] CNN. Using the order as found in the logs and specifications, they

achieved an 89% accuracy. McDoleet. al. [15] follow up with research analysing deeper CNN
architectures using the same data set and ordering scheme. Kimmellet. al. [16] includes using

recurrent neural networks (RNN), by testing the validity of using long short term memories

(LSTM) and Bi-Direction LSTMs. They also explore if the order has an effect on training and
discover that it does affect performance for all models.

Arranging raw IP traffic packets in a grid after the physical layer was stripped, Zhang et. al.
[7]analysed them using CNN, LSTM, and a hybrid of the two. They tested for both binary

classification (benign/maleficent) and multi-classification (benign + 10 maleficent types). They

show all systems achieve quite remarkable, near-perfect results. For binary classification from

4 Computer Science & Information Technology (CS & IT)

the best in precision was the hybrid which was better than CNN, followed by LSTM. With multi-
classification, CNN had some minor advantage in precision over the hybrid, but LSTM was

behind both.

2.3. Visualizing Convolutional Neural Networks

Visually revealing the hidden layers provides researchers comprehension behind neural network
decisions. They are also evolving as the field matures. They aresome form of flow and layer

diagrams, class activation maps [17] (CAM), gradient visualization [18] sensitivity to

perturbations [19], or a confluence of these.

Flow and model diagrams were introduced since the very first deep learning models were

published. They provide a visual representation of the mathematical processing objects that are

coded into the software. They represent these abstracts as spheres or cubes, and as multiple
mathematical objects are aligned in a layer, the graphical constructs are placed next to each other

in a row. A line between objects represent communication or parameter passing pathways. For

convolutional layers, a plane of objects is used, and stacks of planes are a symbol which includes
the third filter dimension. For brevity when the interpretation is understood, sometimes a higher

dimension abstract is represented by a lower level visual construct.

CAMs were initially generated using a weighted sum and up-sampling the class activation maps
from the penultimate layer to generate activation regions of the original image. CAMs have

evolved using different parameters as the weight values for the ratio in summing the class

activation maps. Detailed by Selvarajuet. al in 2016, GradCAM [10] uses gradients in a back
propagation step with a relu function. LayerCAM[20] published by Jiang, et. al. collects the

GradCAM maps from all of the individual layers and then sums them together in a normalized

total that includes higher amount of detail from the shallower layers within the network.

GradCAM++ [21] by Chattopadhyay et. al. modified GradCAM by adjusting a normalizing

factor used to determine the weights for the individual gradients from the feature activation maps.

Devised by Wang et. al. in 2020 ScoreCAM [22], goes further by dropping the gradients
altogether and include a contribution value to measure the importance of each activation map.

EigenCAM submitted by Muhammad et. al. [23] replaces the gradients with an eigenvector that

is derived from a combinations of the weights from all of the layers.

All of these CAM systems have several things in common. They attempt to produce a two

dimensional region that shows how the features on the penultimate layer are related to the objects

within the sample image, and they do so with only a single degree of the resulting image, grey
scale. This works fine with shallower networks since the features within the penultimate layer are

closely related to the pixels within the source image, but what about CNN models that are deep,

and the final feature set have no direct relationship to the initial image, e.g. a source image of
75x75 pixels (75 x 75 x 3) and the resulting DenseNet-121 penultimate layer (2 x 2 x 1028). A

2x2 grid does not distinctly map to points on a 75x75 grid. A better visualization tool is needed

tounderstand these deeper models.

2.4. CNN Models

Many models have been derived as CNN technology matures. Each new model uses a novel

technique to accomplish higher degree of computer image object identification and classification

precision. We examine three in this research. LeNet model [24], ResNet[25], and DenseNet[26].
They were chosen for their distinct architecture and their place as milestones in CNN evolution.

Computer Science & Information Technology (CS & IT) 5

In 1989, LeCunet. al. introduced the LeNet-5 model in [24]. The first to use back propagation in
a practical application as it identifies and classifies black and white images of hand written

numbers provided by the US postal system. The goal, a 1% error rate, was reached after 23

epoch of training. It was sequential in structure and consisted of three convolutional and two

dense layers. The data set they used closely resembles one used in this paper, the MNIST [27]
data set of handwritten numbers.

He et. al. in late 2105 [25], introduced ResNet which added a new feature in network topology,
the residual connection. This is a new link from the input of a convolution stage directly to the

output, using addition, which feeds the next stage's input. This reintroduces the input data to the

following stages, greatly reducing vanishing gradient, a major issue when training deep networks.
They were able to win first in the 2015 ImageNet competition taking the prize in all categories:

classification, localization, and detection. They also won the 2015 COCO competition in the

categories of detection and segmentation. This research uses the smallest published version,

ResNet-18.

Revised in 2018, Huang et. al. [26] published DenseNet. Like residual links, they have

connections around layers but instead of using addition as the function for combining the input
source with the output, they used concatenation. Each stage increases in depth from the previous,

creating adepthwisedenser input cluster. This forwards all of the input information and details

previously gathered from earlier stages to the latter stages. This reduces the data lost by the
addition process used in residual links, maintaining input integrity, further mitigating the

vanishing gradient. They use bottleneck stages to reduce parameter count in the latter layers.

These include a depth separable convolution to reduce the depth and a pooling layer for a

reduction in width and height. This study uses DenseNet-121.

Our previous research expands on the techniques discussed by Abdelsalem et al. [8] by exploring

the relationship between ordering of the rows, columns, and various CNN models’ performance
analysing cyber-security computer process metric data. We identified several structural

relationships on which to base our ordering scheme, we included the use of a statistical

relationship as an option for ordering the metric columns, and we compared those against a

background of random orderings. We showed that using structural relationships as an ordering
appeared to have no more advantage than a random order and statistical relationships as a

foundation for order offered some performance improvement. We also shared that although the

visualization tools available showed some response, the plots were difficult to interpret.

In this research we test these statistical ordering techniques using a different cyber-security data

set, raw IP traffic from CIC-IDS-2017 following the work done by Zhang et. al. [7], and compare
it to the structural order used in Zhang's research. We share a new tool, the Model integrated

Class Activation Map (MiCAM), a confluence of model diagrams with activation maps displayed

per layer. We use with the MNIST data set to establish a baseline so we can understand the

visual representations as they are constructed for features extracted from black and white images.
We then use this tool to analyse the features generated for two cyber-security data sets, computer

process metrics and raw IP traffic, and show how it better displays feature extraction.

3. METHODOLOGY

3.1. Model integrated Class Activation Maps MiCAM

To fully visualize feature extraction we built a tool that is a combination of a model diagram with

class activation maps. A model diagram is a flow plot that has the network layers displayed with

6 Computer Science & Information Technology (CS & IT)

the data pathways identified so the engineer can visually see the related connections between
layers. This flow diagram is rather trivial when working with sequential models, but can be quite

complex when dealing with network like Inception Net, that have multiple interconnections

between layers. A class activation map (CAM) is a combination via a weighted sum of all of the

activation maps for the filters a single layer. The weights for this sum define the type of CAM.
This tool takes the model diagram and instead of displaying an object (i.e. layer) as a graphical

construct (sphere or rectangle) it displays the CAM for that layer. After the MiCAM diagram is

complete the result is a map clearly showing the various features that each layer defines as
important in identifying the class of a tested sample. A diagram of the process steps used to

generate MiCAM plots is found in Figure 1.

The multiple steps to the process are identified in alphabetical order. In the beginning the

researcher has the chosen model and the data seen in (A). The model is trained in step (B) while

at the same time, the model layout is extracted from the model definition. From the result, the

trained model in (C) and the layout the layers are pulled out and the activation model is defined
(D). This model has the pre-trained layers from the trained model laid out with the filters' outputs

exposed for sampling later.

With the activation model, we take a sample (E) and test it determine how it is classified in (F).

Using the activation model post-test and the model layout, we now extract the outputs or

activations (G) for all of the filters and the associated filters' weights in (H). In step (I), using an
inverse Fourier transform, we take the inverted convolution between a filters' activation and its

kernels' weights. We then take the result for each filter and use the weight for the particular filter

to sum a single CAM plot for each layer. This CAM plot is then up-sampled to match the original

input grids dimensions.

To enhance the details within the CAM plots, we use the full RGBA pallete, by associating

different variations of the CAM data within the plotted pixels. We note that every plot has a
maximum and minimum range that is scaled to 256 discrete intensities. These pixel values can

be positive or negative, so we use a set of relu functions to display these variations in intensities

by matching one of the 4 degrees to a specific range of values. For blue we use the full range of

minimum to maximum for this plot, scaled to the 256 colour levels. For red we display the
positive peaks using the relu of the values, scaling from zero to the maximum of this plot. For

green we display the negative peaks using relu of the negative value or zero if the values are

positive, scaling from zero to the minimum. For alpha and size, we use the full range for the plot,
but scale the results to the minimum and maximum values for all of the CAM plots within the

model. The results are very dynamic images that display a full range of the extracted features.

Computer Science & Information Technology (CS & IT) 7

Figure 1. MiCAM Generation Process

After generating the images, we have a stack of CAM plots for all of the layers within the model

(J). For layers that are not convolutional, we simply use a weighted sum of the outputs across the

filter dimension, and then up-sample them to provide a graphic for each layer. For layers that are
one-dimensional (flatten and dense) MiCAM fits the linear data within the input grid, scaling

elements up if there are fewer data points within the layer than the width and height of the source

data. The CAM plots are then integrated with the Model Layout in the Model Diagram Generator
(K) which produces the final MiCAM diagram.

The code uses the "pydot/graphviz" graphical diagram module which has an interface for

integrating images in place of objects. We added some slight modification for passing two list of
parameters. One the list of layers than had CAM plot images, and the second was the list of the

image files for the CAM plots. Both lists must be the same length, and for proper diagram

generation the layer names in the first list should align with the filenames in the second list. The
code is under open source license and found at https://github.com/rklepetko/MiCAM.gitfor easy

access.

3.2. Dataset-1: MNIST Handwritten Numbers

The MNIST data set, compiled and released by Deng [27], consist of a library of images of hand
written numerical text. The 10 image classes are from "0" to "9" and consist 60,000 samples

from 250 census takers and 250 high school students. Another set of testing data was compiled

from a separate group of 250 census and high school students, but comprised of only 10,000

samples. We join the two, shuffle them and use 20% of the data for testing, 20% in validation, or
14,000 of the samples per set, with the remaining used for training. Each sample was fitted in to

a 20x20 grid, normalized for shading, and centered on a 28x28 image. For our analysis on deeper

models, we further up-sampled the image to 75x75 pixels in size. Visual examples of our MNIST
data are seen in Figure 2. We use several MNIST samples with the MiCAM diagrams to give us

a base line on evaluating feature extraction.

Figure 2. MNIST Data Samples

8 Computer Science & Information Technology (CS & IT)

3.3. Dataset-2: Malware Infected Computer Metric by Process Grids

The second data source is process metric samples taken from virtual machines in a cloud IaaS

environment. They were application servers arrayed in a LAMP stack hosted web-site. The
machines were injected with malware halfway through the experiment. There were 114

infections each from different malware packages. During the experiment, the server was polled

for process log samples. Each sample is for a unique process running on the VM kernel and
contains a set of M number of metrics per process during a section of time. Stacking P processes

that are captured during a single time slice results in the matrix:

𝐗𝑡=

[

𝑚1 𝑚2 … 𝑚𝑀
𝑝

1
𝑥𝑚1𝑝1 𝑥𝑚2𝑝1 … 𝑥𝑚𝑀𝑝1

𝑝
2

𝑥𝑚1𝑝2 𝑥𝑚2𝑝2 … 𝑥𝑚𝑀𝑝2

⋮ ⋮ ⋮ ⋱ ⋮
𝑝

𝑃
𝑥𝑚1𝑝𝑃 𝑥𝑚2𝑝𝑃 … 𝑥𝑚𝑀𝑝𝑃]

Our initial research was identifying how order of nonnatural data within the grid affects

performance. We generated ten random rows and ten random columns for 100 options. We also

identified several structural ordering methods and after examining the mathematical relationships

within images derived several statistical relationships to see if they provide any improved
performance. Since objects in images have pixels that are statistically correlated, we use the

statistical functions used are detailed in Table 3 of Appendix A, at the end of this paper. The

metric columns calculation were independent per sample, so we used correlation between two
metrics (Eq. 1), absolute value of correlation (Eq. 3), and one minus the absolute value of the

correlation, or what we called anticorrelation (Eq. 4) to test a counter hypothesis.

Unlike the independent metric columns, process rows calculations were dependent between

samples, so the correlation function (Eq. 2) was derived per metric for a pair of processes. A sum

of the correlation between two processes (Eq. 5) was used as the base process relationship

function, from which we also derived an absolute correlation (Eq. 6) and anticorrelation (Eq. 7)
relationship functions.

Figure 3. Correlated Rows & Columns (left) And Anticorrelated Rows & Columns(right) Benign &

Infected Samples

These functions are then processed through the ordering algorithm, shown in Algorithm 1 found
within the Appendix A which generates the ordering for each row or column along an axis. It can

been seen in the samples ordered with correlation, Figure 3 left, and anticorrelation, Figure 3

right, our correlation functions generate artificial objects while the anticorrelation disperses them.
The 35 metrics were expanded through one hot encoding to M = 75 metric columns and we made

available room in the matrix for as many as P <= 150 process rows. The 29+ million process

samples from 114 experiments (malware infections), and consisted of 31,064 grids, about half of
which are considered infected. The experiments were split between 60% training, 20%

validation, and 20% testing. The entire sample set for each experiment was included in the group

Computer Science & Information Technology (CS & IT) 9

it was assigned, so no experiment was split between training, validation, and testing. Every
training and test set was reorganized among the 252 different ordering schemes we generated.

We test all of our samples on several models, identified the best and worst ordering schemes

(Table 6 in Appendix A) for each CNN model we trained, and then analysed the results of the

best and worst ordering schemes with MiCAM.

3.4. Dataset-3: CIC-IDS-2017 Raw IP Data with Attack Vectors

The CIC-IDS-2017 data set has captured live, raw IP traffic that is intentionally subjected to

various forms of attack vectors. There were 12 attack classes, ten of which were of a sizable

sample. The sample count and break down by class is included with the results in Table 1 found
in the next section. This traffic is compiled by session, with the sessions labeled benign or by

attack class. Each packet in the session has the physical layer of the IP packet stripped, the first

fourteen bytes, and only the following 160 bytes kept. If the original packet wasn't 174 bytes
long, the remaining portion of the 160 bytes are supplied with zeros. The first ten packets of the

session are then compiled in order of transmission, and if there aren't ten packets, the remaining

are filled with zeros. The result is a 10x160 byte grid.

This is the basic single sample from the data set before it is reorganized into a 40x40 square. The

current order of this gird is IP specification for the columns and transmission time for rows.

Transmission time is a natural order, an instance in a sequence, but IP specification, human
defined, is a nonnatural order. Is IP specification the best order? Will statistical correlation on the

data be a high performing order? These are secondary questions this study is trying to resolve.

To test these hypothesis we first generated 100 random column ordering schemes to process and

compare. Since the calculations between bytes are independent per sample we used the function

Eq. 1 and the ordering algorithm shared in Algorithm 1, both found within the Appendix A. To
diversify the number of ordering options available to analyse we used correlation relationships

within different data subsets. The first data set was total of all samples. Next, we separate

between the benign and maleficent and use the correlation of each of these data subsets. We then

extract each of the attack types as subsets and generate correlated orderings from each of these.
The idea is to see if it is possible to focus on a specific artificial objects by re-arraigning the order

to match the correlation generated from that subset sample type. We also generate an absolute

value of the correlation (Eq. 3) and anticorrelation (Eq. 4) orderings for each of the datasets.

This resulted in 146 ordering schemes to analyse. After reordering, the samples were then

translated into a 40x40 grid by splitting the 160 bytes into four sections and stacking them on top

of each other in order. We randomly reordered the samples and split them into 60% training,
20% validation, and 20% testing sets. We cover the evaluation in the next section.

4. EVALUATION

4.1. MiCAM and MNIST

The resulting MiCAM plots are large when compared to other CAM plots. They are usually
vertically aligned following the model layout as the CNN is constructed. Since not only the

convolutional layers, but the pooling, adding and concatenation layers, along with the final flatten

and dense layers at the end of the convolutional stages are all plotted, the combined plot contains
a visual representation of each layer. For example, DenseNet-121, with 121 convolutional layers

has a total of 429 individual layers within the model. For brevity the diagrams are not all

10 Computer Science & Information Technology (CS & IT)

included but can be found on GitHub at: https://github.com/rklepetko/MiCAM.git. We do share
snapshots of elements that illuminate the value of this visualization tool.

Figure 4. MiCAM Plots of LeNet-5 (left one) and MiCAM Plot Clips of ResNet-18(right three) analysing

an MNIST sample”7”

To start we examine the LeNet-5 MiCAM plot (Left side of Figure 4) which clearly shows how

the convolution layers build the identifying features. Examining the dense layers closely it can

be seen the variation in the colour pixelintesities relate to specific features the network has

identified.

Figure 5. Clips of MiCAM Plot from a DenseNet-121 analysing anMNIST sample”7”

It is even clearer when examining ResNet-18 MiCAM plot (the right three plots of Figure-4) as

we display the top, or input stages, the middle of the model, and the final bottom or decision

layers. It's seen in these graphs how the residual links re-introduce features extracted from earlier
layers. It can also be viewed within the final layers how the ResNet-18 network collapses the

number of extracted features to relatively few, 40, as compared to LeNet-5 which was 20736.

Computer Science & Information Technology (CS & IT) 11

Figure 6. MiCAM Plots of the Lower Quarter for the LeNet-5 Best (left) andWorst (right) Orderingof

Samples Benign #212 and Infected #214

Figure 7. MiCAM Plots of Pooling and Last Convolution Layers for the ResNet-5Best (left) and Worst

(right) Ordering of Samples Benign #212 and Infected #214

Examining the DenseNet-121 MiCAM plot of the same sample (Figure 5), we choose to share 49
of the 429 layers. From left to right we include the details of the input layers, the first and last

dense connection before the first bottleneck, the three bottle neck stages, and the final decision

layers. In the dense connection plots, the reintroduction of the input stages initial features (outline

of a "7") is visible as the data cascades through all the way to the first bottleneck stage,
maintaining a higher level of details for feature extraction precision. We can also see that it is

these bottle neck layers that are compiling the features for discrimination later.

12 Computer Science & Information Technology (CS & IT)

Table 1. Sample Counts by Class Set and Analysis Results by Order.

4.2. MiCAM and Malware Infections

As mentioned in the previous section, we use MiCAm to analyse the difference between the best

and worst ordering schemes (Table 6 in Appendix A) when searching for malware. Between the

LeNet-5 MiCAM plots we found the pooling layers to have the most distinguishing
characteristics. It is visible in Figure 6 which is divided by the best and worst ordering schemes.

We can see how the features are better defined in the pooling layers with the stronger intensities,

and the range on the infected sample of the best order is noticeably larger in the second pooling
layer than the worst order.

Within the ResNet-18 plots we see a number of items to take notice of in Figure 7. Several of the

CAM plots are identifying clusters of data points they have some significance on the decision. In
particular the B4 residue convolution layers and associated additions and activation layers,

highlighted in yellow, perhaps point to particular data points the CNN identifies as maleficent or

benign. Also noticed is that the features from the best ordering are distinct in the final pooling
layers for the benign and infected samples, highlighted orange, but the worst order displays those

layers as having similar features by comparison.

Column Order

Sample Set Count % Corr ABS Anti Corr ABS Anti

Bot 1228 0.151% 99.54% 99.58% 99.57% -0.36% 6.98% 6.58%

DDoS 44918 5.539% 99.61% 99.65% 99.55% 14.19% 22.21% 1.70%

DoS Hulk 5952 0.734% 99.58% 99.57% 99.53% 7.86% 5.70% -3.04%

DoS

Slowhttptest 4216 0.520% 99.54% 99.59% 99.56% -0.27% 9.00% 3.60%

DoS sloworis 3872 0.477% 99.46% 99.55% 99.66% -18.97% 1.98% 25.29%

FTP - Patator 3974 0.490% 99.59% 99.55% 99.52% 8.93% 0.34% -5.35%

Infiltration 6 0.001% 99.59% 99.61% 99.64% 9.57% 13.52% 21.20%

PortScan 158410 19.534% 99.57% 99.55% 99.57% 4.51% 0.13% 4.48%

SSH-Patator 2978 0.367% 99.59% 99.56% 99.54% 9.82% 3.71% -0.19%

Web Attack -

Brute Force 1363 0.168% 99.61% 99.57% 99.48% 14.67% 5.37% -15.16%

Web Attack -

Sql Injection 12 0.001% 99.61% 99.59% 99.55% 15.33% 10.09% 0.84%

Web Attack -

XSS 625 0.077% 99.58% 99.48% 99.52% 8.80% -13.74% -6.56%

Malfecient 227554 28.060% 99.56% 99.57% 99.53% 2.98% 6.30% -4.36%

Benign 583411 71.940% 99.52% 99.54% 99.51% -6.38% -0.55% -6.81%

Total 810965 100% 99.59% 99.59% 99.57% 10.95% 9.63% 6.47%

Average

Improvement - - - - - 5.44% 5.38% 1.91%

Sample

Random Average

Internet Protocol Specification

Prec/Recal mAP Improve/Degrade

99.545% 0%

99.703% 34.675%

Computer Science & Information Technology (CS & IT) 13

To keep this report within the space limit, we are not displaying the DenseNet-121 graphs, but
they are available at the Git site mentioned earlier. Things to note, the CAM plots most relatable

to the source data are the last convolution stage before the first bottle neck stage. We see a

number of highlighted pixels of interest for the different classifications. In particular we notice a

highlighted row within the best ordering scheme for an infected sample, perhaps informing us
that we have an infected process on that row.

4.3. MiCAMand IP Attacks

One of the unique details this study considers relevant is analysing the affect that order has on

nonnatural data, and one data set, the CIC-IDS-2017 raw IP-traffic data, poses a scenario to tests
our hypothesis. As described previously, we devised 146 different columns related ordering

schemes, and compare them with the results when using the order devised using the IP-

specification as a scheme. We trained a shallow LeNet-3 CNN model (2 convolution and one
dense layer), matching previously published research and the results are found in Table 1. They

include the PR curve mAP for every non-random ordering scheme we devised including a

percentage of improvement over the average mAP for all of the randomly generated schemes.
We include a breakdown of the results in our conclusion section.

Table 2. Best and Worst Ordering Schemes for Maleficent IP-Traffic.

To analyse the differences between the best and worst ordering schemes with the MiCAM

diagrams, we identified them and include their details in Table2.

Figure 8. MiCAM Plots of LeNet-3 Analysing Best Order (IP Spec) IP Packets with Benign and

Maleficent Packages

Examining the MiCAM plots, in Figures 8 and 9, we can see how the best order has a wider

range, with the peak negative values showing very distinct regions within the convolutional
layers. Also in both orders, in several layers it shows the first quarter of the sample is significant

in finding the maleficent sample's attack vector, while several areas within the packet are

identified significant in the benign.

CNN Best Column mAP Worst Column mAP

Architecture Order Score Row Order Score

Lenet-3 (10 Epoch) IP Specification 99.70% Random-40 99.45%

14 Computer Science & Information Technology (CS & IT)

Figure 9. MiCAM Plots of LeNet-3 Analysing Worst Order (Randon-40) IP Packets with Benign and

Maleficent Packages

5. CONCLUSIONS

The MiCAM diagrams offer more detail regarding feature extraction within the CNN models.

They visually expose the layers allowing the user to further understand the intensities of the

features extracted within the CNN structure. We've seen and identified several capabilities that
allow us to further compare how minor variation in a model or process can affect feature

extraction. This offers an additional tool for engineers as they tailor CNN models to non natural

cybersecurty applications. We used CAM plots that normalized the sum of activation maps with

the filters weights for the individual map, but one could enhance this tool to include other CAM
variations, and better methods for displaying the one dimensional (flatten and dense) layers.

There is some processing cost related to generating the MiCAM plots. We went to some length to
take advantage of the graphics engine by plotting all of the pixels within a single layer at one

time which greatly improved the rendering speed.

When comparing the CIC-IDS-217 dataset ordering schemes, counter our hypothesis, the

ordering scheme derived when following the IP specification exceeded expectations out

performing all other ordering options. This shows the care to which IEEE specification was laid

to logically organize the data packets as they relate to each other.

It is also interesting to note that the majority of the ordering schemes devised around a statistical

relationship between data bytes within subsets of the data also performed better than average.
The surprise regarding the subsets was the correlation of the benign samples. Only two other

correlation subsets showed a major degradation in performance compared to the random average,

and those sample sizes were less than one percent of the total samples. The benign correlation

had 70% of the samples, but resulted in more than a 6% degradation. Focusing on benign samples
to find maleficent actors proved detrimental. These findings support our hypothesis that statistical

correlation does produce a better than average precision, as long as the data subset that the

correlation is taken from has enough maleficent samples.

It's also notable that although anticorrelation ordering did have some significant improvement for

some subsets, the majority of the subsets showed a poorer performance. Absolute value of
correlation produced only one significantly detrimental ordering using a subset, which comprised

Computer Science & Information Technology (CS & IT) 15

of less than 1/10th of 1% of the total samples, so appears to be a relativity safe when using with a
shallow network.

To further our understanding on how order affects CNN performance when analysing non-natural

data, we plan on continuing our research by:

 UsingMiCAM to further analyse the differences in CNN model response when

comparing ordering schemes.

 Identifying other security and nonsecurity datasets on which to test ordering hypothesis

and techniques.

 Integrating the CNN feature extraction with other models to see if order can improve
performance of ML hybrids.

ACKNOWLEDGEMENTS

This work is partially supported by NSF grants HRD-1736209 and CNS-1553696.

REFERENCES

[1] He, K., Zhang, X., Ren, S., Sun, J. (December 2015) Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification. In: The IEEE International Conference on Computer

Vision (ICCV).

[2] Lee, J.Y., Dernoncourt, F. (2016) Sequential short-text classification with recurrent and convolutional

neural networks. CoRR abs/1603.03827, http://arxiv.org/abs/1603.03827.

[3] Deng, L., Hinton, G., Kingsbury, B. (May 2013) New types of deep neural network learning for

speech recognition and related applications: an overview. In: 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing. pp. 8599-8603

https://doi.org/10.1109/ICASSP.2013.6639344.

[4] Mobadersany, P., Yousefi, S., Amgad, M., Gutman, D.A., Barnholtz-Sloan, J.S., Velazquez Vega,

J.E., Brat, D.J.,Cooper, L.A.D. (2018) Predicting cancer outcomes from histology and genomics

using convolutional networks. Proceedings of the National Academy of Sciences 115(13), E2970-

E2979. https://doi.org/10.1073/pnas.1717139115,https://www.pnas.org/content/115/13/E2970.

[5] van Wyk, F., Wang, Y., Khojandi, A., Masoud, N. (2020) Real-time sensor anomaly detection and

identification in automated vehicles. IEEE Transactions on Intelligent Transportation Systems 21(3),

1264-1276. https://doi.org/10.1109/TITS.2019.2906038.

[6] Liu, C., Dai, L., Cui, W., Lin, T. (2019) A byte-level cnn method to detect dns tunnels. In: 2019 IEEE

38th International Performance Computing and Communications Conference (IPCCC). pp. 1-8.

https://doi.org/10.1109/IPCCC47392.2019.8958714.
[7] Zhang, Y., Chen, X., Jin, L., Wang, X., Guo, D. (2019) Network intrusion detection: Based on deep

hierarchical network and original flow data. IEEE Access 7, 37004-37016.

https://doi.org/10.1109/ACCESS.2019.2905041.

[8] Abdelsalem, M., Krishnan, R., Huang, Y., Sandu, R. (2018) Malware detection in cloud infrastructure

using convolutional neural networks. IEEE 11th International Conference on Cloud Computing.

[9] Hu, Y., Zhang, D., Cao, G., Pan, Q. (2019) Network data analysis and anomaly detection using CNN

technique for industrial control systems security. In: 2019 IEEE International Conference on Systems,

Man and Cybernetics (SMC). pp. 593-597. https://doi.org/10.1109/SMC.2019.8913895.

[10] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D. (Oct 2019) Grad-cam:

Visual explanations from deep networks via gradient-based localization. International Journal of

Computer Vision 128(2), 336-359. https://doi.org/10.1007/s11263-019-01228-7,
http://dx.doi.org/10.1007/s11263-019-01228-7.

[11] Lihao, W., Yanni, D. (Nov 2018) A fault diagnosis method of tread production line based on

convolutional neural network. In: 2018 IEEE 9th International Conference on Software Engineering

and Service Science (ICSESS). pp. 987-990. https://doi.org/10.1109/ICSESS.2018.8663824.

16 Computer Science & Information Technology (CS & IT)

[12] Golinko, E., Sonderman, T., Zhu, X. (Dec 2018) Learning convolutional neural networks from

ordered features of generic data. In: 2018 17th IEEE International Conference on Machine Learning

and Applications (ICMLA). pp. 897-900 https://doi.org/10.1109/ICMLA.2018.00145.

[13] Park, K.M., Kim, J., Park, J., Park, F.C. (2021) Learning-based realtime detection of robot collisions

without joint torque sensors. IEEE Robotics and Automation Letters 6(1), 103–110.
https://doi.org/10.1109/LRA.2020.3033269.

[14] Liu, G., Zhao, F. (2007) An efficient compression algorithm for hyperspectral images based on

correlation coefficients adaptive three dimensional wavelet zerotree coding. In: 2007 IEEE

International Conference on Image Processing. vol. 2, pp. II-341 -- II-344.

https://doi.org/10.1109/ICIP.2007.4379162.

[15] McDole, A., Abdelsalam, M., Gupta, M., Mittal, S. (2020): Analyzing CNN based behavioural

malware detection techniques on cloud IAAS. In: Zhang, Q.,Wang, Y., Zhang, L.J. (eds.) Cloud

Computing - CLOUD 2020. pp. 64-79. Springer International Publishing, Cham.

[16] Kimmel, J.C., Mcdole, A.D., Abdelsalam, M., Gupta, M., Sandhu, R. (2021) Recurrent neural

networks based online behavioural malware detection techniques for cloud infrastructure. IEEE

Access 9, 68066-68080. https://doi.org/10.1109/ACCESS.2021.3077498.

[17] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A. (2015) Learning deep features for
discriminative localization.

[18] Erhan, D., Bengio, Y., Courville, A., Vincent, P. (2009) Visualizing higher layer features of a deep

network. University of Montreal 1341(3), 1.

[19] Ribeiro, M.T., Singh, S., Guestrin, C. (2016) " why should i trust you?" explaining the predictions of

any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge

discovery and data mining. pp. 1135-1144

[20] Jiang, P.T., Zhang, C.B., Hou, Q., Cheng, M.M., Wei, Y. (June 2021) Layercam: Exploring

hierarchical class activation maps. IEEE Transactions on Image Processing pp, 1-1.

https://doi.org/10.1109/TIP.2021.3089943.

[21] Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N. (Mar 2018) Grad-cam++:

Generalized gradient-based visual explanations for deep convolutional networks. 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV). https://doi.org/10.1109/wacv.2018.00097,

http://dx.doi.org/10.1109/WACV.2018.00097.

[22] Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S., Mardziel, P., Hu, X. (2020) Score-cam:

Score-weighted visual explanations for convolutional neural networks

[23] Muhammad, M.B., Yeasin, M.(Jul 2020) Eigen-CAM: Class activation map using principal

components. In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE.

https://doi.org/10.1109/ijcnn48605.2020.9206626.

[24] LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D. (1989)

Backpropagation applied to handwritten zip code recognition. Neural Computation 1(4), 541-551.

https://doi.org/10.1162/neco.1989.1.4.541.

[25] He, K., Zhang, X., Ren, S., Sun, J. (2015) Deep residual learning for image recognition. CoRR

abs/1512.03385,http://arxiv.org/abs/1512.03385.
[26] Huang, G., Liu, Z., Weinberger, K.Q. (2016) Densely connected convolutional networks. CoRR

abs/1608.06993, http://arxiv.org/abs/1608.06993.

[27] Deng, L. (2012) Themnist database of handwritten digit images for machine learning research. IEEE

Signal Processing Magazine 29(6),141-142.

APPENDIX-A

In Table 3on the next page are the equations we presented as ordering foundations in our
previous research and test MiCAM analysis with in this study. They are used as parameters for

ordering Algorithm 1 found on the following page.

Computer Science & Information Technology (CS & IT) 17

Table 3. Detailed Set of Statistical Relationship Functions.

Equation 1: Metric/Byte Column Statistical Correlation Function

𝜌𝑚𝑖 𝑚𝑗 =
𝐸(𝑥𝑚𝑖𝑥𝑚𝑗) − 𝐸(𝑥𝑚𝑖)𝐸(𝑥𝑚𝑗)

√𝐸(𝑥𝑚𝑖
2) − 𝐸(𝑥𝑚𝑖)

2 − √𝐸(𝑥𝑚𝑗
2) − 𝐸(𝑥𝑚𝑗)

2

Equation 2: Process Row Statistical Correlation Function

𝜌𝑚𝑘 𝑝𝑖 𝑝𝑗 =
𝐸(𝑥𝑚𝑘 𝑝𝑖 𝑥𝑚𝑘 𝑝𝑗) − 𝐸(𝑥𝑚𝑘 𝑝𝑖)𝐸(𝑥𝑚𝑘 𝑝𝑗)

√𝐸(𝑥𝑚𝑘 𝑝𝑖
2) − 𝐸(𝑥𝑚𝑘 𝑝𝑖)2 − √𝐸(𝑥𝑚𝑘 𝑝𝑗

2) − 𝐸(𝑥𝑚𝑘 𝑝𝑗)2

Equation 3: Metric/Byte Column ABS-Correlation Function

𝜌𝐴𝐵𝑆 𝑚𝑖 𝑚𝑗 = |𝜌𝑚𝑖 𝑚𝑗|

Equation 4: Metric/Byte Column Anticorrelation Function

𝜌𝐴𝑁𝑇𝐼 𝑚𝑖 𝑚𝑗 = (1 − |𝜌𝑚𝑖 𝑚𝑗|)

Equation 5: Process Row Correlation (Sum) for All Metrics Function

𝜌𝑆𝑈𝑀 𝑝𝑖 𝑝𝑗 = ∑ 𝜌𝑚𝑘 𝑝𝑖 𝑝𝑗

𝑀

𝑘=1

Equation 6:Process Row ABS-Correlation for All Metrics Function

𝜌𝐴𝐵𝑆 𝑝𝑖 𝑝𝑗 = ∑|𝜌𝑚𝑘 𝑝𝑖 𝑝𝑗|

𝑀

𝑘=1

Equation 7: Process Row Anticorrelation for All Metrics Function

𝜌𝐴𝑁𝑇𝐼 𝑝𝑖 𝑝𝑗 = ∑(1 − |𝜌𝑚𝑘 𝑝𝑖 𝑝𝑗|)

𝑀

𝑘=1

Equation 8: Metric/Byte Column Total Relationship Function

𝜌𝑇𝑂𝑇 𝑚𝑖 = ∑(𝜌𝑚𝑖 𝑚𝑗)

𝑀

𝑗=1

Equation 9: Process Row Total Relationship Function

𝜌𝑇𝑂𝑇 𝑝𝑖 = ∑(𝜌𝑆𝑈𝑀 𝑝𝑖 𝑝𝑗)

𝑃

𝑗=1

18 Computer Science & Information Technology (CS & IT)

Algorithm 1: Derive Statistical Relationship Order.

Following that are two tables which are the results from our previously published VM Malware

analysis but are now using with MiCAM. The first (Table 4) is the PR curve mAP results from

the various ordering schemes. The second is (Table 5) the percentage of improvement (or
degradation) over the observed average. The last (Table 6) shows the best and worst performing

ordering schemes that we use to analyse with MiCAM.

Table 4. Mean AUC for Precision Recall Curves for Malware Analysis.

Table 5. Percentage Improvement over Average (Mean) Performance for Malware Analysis.

CNN All Correlated ABS-Corr Anti-Corr Correlated ABS-Corr Anti-Corr

Architecture Options Rows Rows Rows Columns Columns Columns

LENET-5 (20 epoch) 99.550% 99.680% 99.580% 99.090% 99.590% 99.600% 99.440%

ResNet-18 89.850% 87.020% 86.560% 94.530% 91.240% 89.230% 95.130%

DenseNet-121 99.530% 99.700% 99.430% 99.200% 99.600% 99.520% 99.560%

CNN 100% minus Correlated ABS-Corr Anti-Corr Correlated ABS-Corr Anti-Corr

Architecture All Mean Columns Columns Columns Rows Rows Rows

LENET-5 (20 epoch) 0.450% 8.889% 11.111% -24.444% 28.889% 6.667% -102.222%

ResNet-18 10.150% 13.695% -6.108% 52.020% -27.882% -32.414% 46.108%

DenseNet-121 0.470% 14.894% -2.128% 6.383% 36.170% -21.277% -70.213%

For features along an axis, fi, define a function, 𝜌𝑓𝑖 𝑓𝑗∀ 𝑖, 𝑗;

From 𝜌𝑓𝑖 𝑓𝑗define 𝜌𝑇𝑂𝑇 𝑓𝑖 ∀ 𝑖;

Create a selection pool of features P ∋fi;

WhileP ≠ Ø do:
 Create and empty bidirectional queue Q for features fi;

 Find max(𝜌𝑇𝑂𝑇 𝑓𝑖) ∀fi∈P;

 Place corresponding feature fmax(ρ) onto Q;

 Remove feature fmax(ρ) from P;

 Create two pointers left, L, and right, R; L, R∈Q;

 Point L and R towards fmax(ρ) in Q;

 WhileP ≠ Øandnot(STOP) do:

 If ∃𝜌𝑓𝐿 𝑓𝑖 ∀fi∈P or ∃𝜌𝑓𝑅 𝑓𝑖 ∀fi∈Pthen:

 Find max(𝜌𝑓𝐿 𝑓𝑖 , 𝜌𝑓𝑅 𝑓𝑖) ∀fi∈P;

 Place new feature fmax(ρ) next to the appropriate fL or fR on Q;

 Remove new feature fmax(ρ) from P;
 Move the appropriate pointer L and R towards the new fmax(ρ) in Q;

 Else:

 Stack current queue Q into final ordered axis V;
 STOP;

 End if else;

 End while;

End while;

Result: A vector V of features fi that are ordered by the relationship function

𝜌𝑓𝑖 𝑓𝑗 .

Computer Science & Information Technology (CS & IT) 19

Table 6. Best and Worst Ordering Schemes for Malware Analysis by CNN Model.

AUTHORS

Randy Klepetko graduated from Texas A&M University in May of 1990 with a

Bachelors n Computer Science. Since, he has enjoyed a 30 year career in a broad

range of engineering and digital fields. He continued his education with courses in

electrical engineering and electronics at Texas A&M University, San Antonio

College, and University at San Antonio during the 1990’s and 2000’s, saturating his

knowledge in audio and video engineering protocols, methods and techniques. In

2017 he returned to academia at the University of Texas at San Antonio to enhance

his competency regarding digital security where he was encouraged to join the University’s Center for
Security and Privacy Enhanced Cloud Computing (C-SPECC), receiving his Masters in May 2022 and

scheduled PhD completion in December

Ram Krishnan is a Professor of Electrical and Computer Engineering at the University of Texas at San

Antonio, where he holds Microsoft President’s Endowed Professorship. His research focuses on (a)

applying machine learning to strengthen cybersecurity of complex systems and (b) developing novel

techniques to address security/privacy concerns in machine learning. He actively works on topics such as

using deep learning techniques for runtime malware detection in cloud systems and automating identity and

access control administration, security and privacy enhanced machine learning and defending against

adversarial attacks in deep neural networks. He is a recipient of NSF CAREER award (2016), the

University of Texas System Regents’ Outstanding Teaching Award (2015) and the UTSA President’s
Distinguished Award for Research Achievement (2016). He received his PhD from George Mason

University in 2010.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

CNN mAP mAP

Architecture Row Order Column Order Score Row Order Column Order Score

LENET-5 (20 epoch) Correlated Random-5 99.82% Anticorrelated Random-2 98.64%

ResNet-18 Random-1 Random-9 99.99% Random-1 Original 50.31%

DenseNet-121 VMPID Random-1 99.87% ABS-Correlated Random-5 96.36%

Best Combined Worst Combined

	Abstract
	Keywords
	Convolutional Neural Networks, Security, Malware Detection, Visualizations, Deep Learning

