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ABSTRACT 
 
Convolutional Neural Networks (CNN) continue to revolutionize image recognition technology 

and are being used in non-image related fields such as cybersecurity.  They are known to work 

as feature extractors, identifying patterns within large data sets, but when dealing with 

nonnatural data, what these features represent is not understood.  Several class activation map 

(CAM) visualization tools are available that assist with understanding the CNN decisions when 

used with images, but they are not intuitively comprehended when dealing with nonnatural 

security data.  Understanding what the extracted features represent should enable the data 

analyst and model architect tailor a model to maximize the extracted features while minimizing 

the computational parameters.  In this paper we offer a new tool Model integrated Class 

Activation Maps, (MiCAM) which allows the analyst the ability to visually compare extracted 

feature intensities at the individual layer detail.  We explore using this new tool to analyse 

several datasets.  First the MNIST handwriting data set to gain a baseline understanding.  We 
then analyse two security data sets: computers process metrics from cloud based application 

servers that are infected with malware and the CIC-IDS-2017 IP data traffic set and identify 

how re-ordering nonnatural security related data affects feature extraction performance and 

identify how reordering the data affect feature extraction performance. 
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1. INTRODUCTION 
 

Improvements in CNN have achieved better than human performance in computer image 

recognition [1]. They also have applications in non-image related research.  Other sources of data 
include text [2], sound [3], and in the medical diagnostics of DNA [4]. These are examples where 

the data is organized in a grid like fashion by nature.  But what about cases where the data wasn't 

ordered by natural phenomena?  Sensors on an automated vehicle [5] for example, does the order 
matter? In most “nonnatural” applications the grid order is defined by some man made structure, 

usually defined by an arbitrary specification. The term “nonnatural” is for those data ordering 

schemes not defined by nature, as opposed “unnatural” which infers the “supernatural”. 

 
Using CNN in detecting cyber-security issues has shown significant interest.  Raw IP traffic [6, 

7] computer process metrics [8], and industrial sensors [9] are all data sets where researchers are 

evaluating CNN use in security.   CNN are successful as they identify patterns from large data 
sets to extract features.  CNN are often applied as a feature extractor source which is supplied as 

the input stage to decision network such as a densely connected, recurrent, or another machine 

learning procedure.  To maximize the patterns detected, order of the grid supplied to a CNN 

should be of concern when it was arbitrarily defined.   

http://airccse.org/cscp.html
http://airccse.org/csit/V13N02.html
https://doi.org/10.5121/csit.2023.130201
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In our previous research we showed that using the structural order in detecting malware using 
computer process metrics is not preferred when training a shallow or deep CNN model if high 

accuracy and precision are desired. We found that using statistical relationships as a basis for 

order does improve performance. We showed that grouping our data points created artificial 

objects that most CNN models could better identify as malware features.  Do these finding hold 
true when analysing raw IP data traffic? 

 

CNN models consist of various layers each performing a specific task.  Some run convolutions 
via a series of filters, some pool data points together, while others perform mathematical 

operations over either one or a pair of grids. Comprehending what could be going on within these 

“black boxes” is improved with visualization techniques that let the user by eyesight understand 
what the network is doing.   

 

By providing transparency and an explanation [10] as to the network parameter intensities they 

assist the researcher in all stages of the network development life cycle. Early in model 
construction visualizations provide failure details letting the engineer to see how performance is 

affected by model changes. Visualizing the hidden layers enhance confidence that the model is 

identifying a proper set of features during network maturity. As the network exceeds human 
performance, the visualization tools provide a computer instructor, teaching novel ways of 

examining the data to the researcher.   

 
A number of visualization tools have been created to assist in the engineering and development of 

CNN. Some image generating tools create graphs to provide a higher level understanding of the 

data flow within the model. Other visualization tools provide histograms of the parameters as 

they adjust over the training period. One important class of visualization tools are classification 
response graphs which are designed to show the how responsive a pixel is to that particular 

classification made on a tested sample.  These include Salience and CAM graphs.  Most of these 

latter tools apply well with image data, but are not as well suited for data that is not visual in 
nature like cyber-security. These novel cases is where this research is focused. To find the 

patterns that the CNN layers are extracting from non-natural security data as features, we built a 

better visualization tool. 

 
The contributions of this paper are: 

 

 Present a new visualization tool, Model integrated Class Activation Maps (MiCAM), a 

confluence of several visualization tools, and show how MiCAM assists in identifying 
feature extraction response. 

 Test previous defined ordering algorithms with a new security data set, raw IP traffic 

from CIC-IDS-2017, showing again that statistical correlation provides a better than 

randomly ordered performance. 
 

The remainder of the paper is organized as follows: Section 2 discusses related work 

using CNN with nonnatural data and a background on visualization tools. Section 3 

outlines the methodology including a description of MiCAM and data organization. 
Section 4 describes the analysis procedure and evaluation results. Section 5 summarizes 

and concludes this paper. 
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2. RELATED WORK 

 

2.1. Convolutional Neural Networks and NonnaturalData 
 

CNN have matured to where they have many applications, beyond the recognition of images.  
Their ability is to identify patterns in large data sets when that data can be arraigned in a grid.  

For instance, in the analysis of tire tread using the parameters measured during the manufacturing 

process.  Lihao and Yanni [11] with eleven metrics sampled from four manufacturing levels, they 
arraigned a 4x11 matrix and were able to identify faulty tires with a 94% accuracy. 

 

Golinko et al. in [12] used a one dimensional CNN as a feature extractor front for other machine 

learning algorithms (k-Nearest Neighbour with k=1, Support Vector Machine, and Random 
Forest), examining if the ordering of nonnatural ``Generic" source data for the CNN has a 

performance impact on the final classifying algorithm. They found that using statistical 

correlation as a method for identifying relationships of adjacent data performed well, but not pre-
ordering the data for CNN feature extraction was detrimental. Using a correlation ordering 

scheme offered improvement in most cases, especially for kNN and SVN, improving accuracy 

from 76% with no feature extraction to 82% if the data points were ordered by correlation prior to 

CNN feature extraction. 
 

In a collision detection systemPark, et. al. [13] used information from robotic sensors and 

actuators creating 66 data points. Testing both a one-dimensional CNN and a Support Vector 
Machine Regression they were able to show that the CNN would perform better if it trained with 

enough data, but the SVMR performed better with less training. 

 
With cross-related sensor data (local speed, GPS location, and accelerometer) from automated 

vehicles, Van Wyk, et. al. [5] used an analyser to identify whenever any of the sensors behaved 

anomalously.  The different analysers tested included a Kalman Filter, CNN, and a CNN-KF 

hybrid.  Each had its unique benefits. 
 

2.2. Convolutional Neural Networks and Security 
 

CNNs have found value in cyber-security applications. Their ability to find patterns instead of 

statically looking for distinct signatures provide feature extraction from large data sets and using 

the algorithm's nonlinear space enables the dynamic/online detection of zero-day attacks.  These 
data sources are usually nonnatural. 

 

From hypervisors in a cloud environment Abdelsalem et al. [8] places process metrics as they are 
reported into a grid as they look for malware as it is injected into virtual machines. This produced 

a set of 35 metrics that were captured per time segment for every running process. They were 

supplied to a Lenet-5 [14] CNN.  Using the order as found in the logs and specifications, they 

achieved an 89% accuracy. McDoleet. al. [15] follow up with research analysing deeper CNN 
architectures using the same data set and ordering scheme. Kimmellet. al. [16] includes using 

recurrent neural networks (RNN), by testing the validity of using long short term memories 

(LSTM) and Bi-Direction LSTMs. They also explore if the order has an effect on training and 
discover that it does affect performance for all models. 

 

Arranging raw IP traffic packets in a grid after the physical layer was stripped, Zhang et. al. 
[7]analysed them using CNN, LSTM, and a hybrid of the two. They tested for both binary 

classification (benign/maleficent) and multi-classification (benign + 10 maleficent types). They 

show all systems achieve quite remarkable, near-perfect results.  For binary classification from 
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the best in precision was the hybrid which was better than CNN, followed by LSTM. With multi-
classification, CNN had some minor advantage in precision over the hybrid, but LSTM was 

behind both. 

 

2.3. Visualizing Convolutional Neural Networks 
 

Visually revealing the hidden layers provides researchers comprehension behind neural network 
decisions. They are also evolving as the field matures. They aresome form of flow and layer 

diagrams, class activation maps [17] (CAM), gradient visualization [18] sensitivity to 

perturbations [19], or a confluence of these.  

 
Flow and model diagrams were introduced since the very first deep learning models were 

published. They provide a visual representation of the mathematical processing objects that are 

coded into the software. They represent these abstracts as spheres or cubes, and as multiple 
mathematical objects are aligned in a layer, the graphical constructs are placed next to each other 

in a row. A line between objects represent communication or parameter passing pathways. For 

convolutional layers, a plane of objects is used, and stacks of planes are a symbol which includes 
the third filter dimension.  For brevity when the interpretation is understood, sometimes a higher 

dimension abstract is represented by a lower level visual construct. 

 

CAMs were initially generated using a weighted sum and up-sampling the class activation maps 
from the penultimate layer to generate activation regions of the original image. CAMs have 

evolved using different parameters as the weight values for the ratio in summing the class 

activation maps. Detailed by Selvarajuet. al in 2016, GradCAM [10] uses gradients in a back 
propagation step with a relu function. LayerCAM[20] published by Jiang, et. al. collects the 

GradCAM maps from all of the individual layers and then sums them together in a normalized 

total that includes higher amount of detail from the shallower layers within the network.   
 

GradCAM++ [21] by Chattopadhyay et. al. modified GradCAM by adjusting a normalizing 

factor used to determine the weights for the individual gradients from the feature activation maps.  

Devised by Wang et. al. in 2020 ScoreCAM [22], goes further by dropping the gradients 
altogether and include a contribution value to measure the importance of each activation map.  

EigenCAM submitted by Muhammad et. al. [23] replaces the gradients with an eigenvector that 

is derived from a combinations of the weights from all of the layers.   
 

All of these CAM systems have several things in common. They attempt to produce a two 

dimensional region that shows how the features on the penultimate layer are related to the objects 

within the sample image, and they do so with only a single degree of the resulting image, grey 
scale. This works fine with shallower networks since the features within the penultimate layer are 

closely related to the pixels within the source image, but what about CNN models that are deep, 

and the final feature set have no direct relationship to the initial image, e.g. a source image of 
75x75 pixels (75 x 75 x 3) and the resulting DenseNet-121 penultimate layer (2 x 2 x 1028).  A 

2x2 grid does not distinctly map to points on a 75x75 grid.  A better visualization tool is needed 

tounderstand these deeper models. 
 

2.4. CNN Models 
 
Many models have been derived as CNN technology matures.  Each new model uses a novel 

technique to accomplish higher degree of computer image object identification and classification 

precision.  We examine three in this research.  LeNet model [24], ResNet[25], and DenseNet[26].  
They were chosen for their distinct architecture and their place as milestones in CNN evolution. 
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In 1989, LeCunet. al. introduced the LeNet-5 model in [24].  The first to use back propagation in 
a practical application as it identifies and classifies black and white images of hand written 

numbers provided by the US postal system.  The goal, a 1% error rate, was reached after 23 

epoch of training. It was sequential in structure and consisted of three convolutional and two 

dense layers. The data set they used closely resembles one used in this paper, the MNIST [27] 
data set of handwritten numbers. 

 

He et. al. in late 2105 [25], introduced ResNet which added a new feature in network topology, 
the residual connection.  This is a new link from the input of a convolution stage directly to the 

output, using addition, which feeds the next stage's input.  This reintroduces the input data to the 

following stages, greatly reducing vanishing gradient, a major issue when training deep networks.  
They were able to win first in the 2015 ImageNet competition taking the prize in all categories: 

classification, localization, and detection.  They also won the 2015 COCO competition in the 

categories of detection and segmentation.  This research uses the smallest published version, 

ResNet-18.   
 

Revised in 2018, Huang et. al. [26] published DenseNet. Like residual links, they have 

connections around layers but instead of using addition as the function for combining the input 
source with the output, they used concatenation.  Each stage increases in depth from the previous, 

creating adepthwisedenser input cluster.  This forwards all of the input information and details 

previously gathered from earlier stages to the latter stages.  This reduces the data lost by the 
addition process used in residual links, maintaining input integrity, further mitigating the 

vanishing gradient.  They use bottleneck stages to reduce parameter count in the latter layers.  

These include a depth separable convolution to reduce the depth and a pooling layer for a 

reduction in width and height.  This study uses DenseNet-121. 
 

Our previous research expands on the techniques discussed by Abdelsalem et al. [8] by exploring 

the relationship between ordering of the rows, columns, and various CNN models’ performance 
analysing cyber-security computer process metric data.  We identified several structural 

relationships on which to base our ordering scheme, we included the use of a statistical 

relationship as an option for ordering the metric columns, and we compared those against a 

background of random orderings.  We showed that using structural relationships as an ordering 
appeared to have no more advantage than a random order and statistical relationships as a 

foundation for order offered some performance improvement.  We also shared that although the 

visualization tools available showed some response, the plots were difficult to interpret. 
 

In this research we test these statistical ordering techniques using a different cyber-security data 

set, raw IP traffic from CIC-IDS-2017 following the work done by Zhang et. al. [7], and compare 
it to the structural order used in Zhang's research.  We share a new tool, the Model integrated 

Class Activation Map (MiCAM), a confluence of model diagrams with activation maps displayed 

per layer.  We use with the MNIST data set to establish a baseline so we can understand the 

visual representations as they are constructed for features extracted from black and white images.  
We then use this tool to analyse the features generated for two cyber-security data sets, computer 

process metrics and raw IP traffic, and show how it better displays feature extraction. 

 

3. METHODOLOGY 

 

3.1. Model integrated Class Activation Maps MiCAM 
 
To fully visualize feature extraction we built a tool that is a combination of a model diagram with 

class activation maps.  A model diagram is a flow plot that has the network layers displayed with 
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the data pathways identified so the engineer can visually see the related connections between 
layers.  This flow diagram is rather trivial when working with sequential models, but can be quite 

complex when dealing with network like Inception Net, that have multiple interconnections 

between layers.  A class activation map (CAM) is a combination via a weighted sum of all of the 

activation maps for the filters a single layer.  The weights for this sum define the type of CAM. 
This tool takes the model diagram and instead of displaying an object (i.e. layer) as a graphical 

construct (sphere or rectangle) it displays the CAM for that layer.  After the MiCAM diagram is 

complete the result is a map clearly showing the various features that each layer defines as 
important in identifying the class of a tested sample.  A diagram of the process steps used to 

generate MiCAM plots is found in Figure 1. 

 
The multiple steps to the process are identified in alphabetical order. In the beginning the 

researcher has the chosen model and the data seen in (A). The model is trained in step (B) while 

at the same time, the model layout is extracted from the model definition.  From the result, the 

trained model in (C) and the layout the layers are pulled out and the activation model is defined 
(D).  This model has the pre-trained layers from the trained model laid out with the filters' outputs 

exposed for sampling later.  

 
With the activation model, we take a sample (E) and test it determine how it is classified in (F).  

Using the activation model post-test and the model layout, we now extract the outputs or 

activations (G) for all of the filters and the associated filters' weights in (H).  In step (I), using an 
inverse Fourier transform, we take the inverted convolution between a filters' activation and its 

kernels' weights.  We then take the result for each filter and use the weight for the particular filter 

to sum a single CAM plot for each layer. This CAM plot is then up-sampled to match the original 

input grids dimensions. 
 

To enhance the details within the CAM plots, we use the full RGBA pallete, by associating 

different variations of the CAM data within the plotted pixels. We note that every plot has a 
maximum and minimum range that is scaled to 256 discrete intensities.  These pixel values can 

be positive or negative, so we use a set of relu functions to display these variations in intensities 

by matching one of the 4 degrees to a specific range of values.  For blue we use the full range of 

minimum to maximum for this plot, scaled to the 256 colour levels.  For red we display the 
positive peaks using the relu of the values, scaling from zero to the maximum of this plot.  For 

green we display the negative peaks using relu of the negative value or zero if the values are 

positive, scaling from zero to the minimum.  For alpha and size, we use the full range for the plot, 
but scale the results to the minimum and maximum values for all of the CAM plots within the 

model.  The results are very dynamic images that display a full range of the extracted features. 
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Figure 1.  MiCAM Generation Process 

 
After generating the images, we have a stack of CAM plots for all of the layers within the model 

(J).  For layers that are not convolutional, we simply use a weighted sum of the outputs across the 

filter dimension, and then up-sample them to provide a graphic for each layer. For layers that are 
one-dimensional (flatten and dense) MiCAM fits the linear data within the input grid, scaling 

elements up if there are fewer data points within the layer than the width and height of the source 

data.  The CAM plots are then integrated with the Model Layout in the Model Diagram Generator 
(K) which produces the final MiCAM diagram.   

 

The code uses the "pydot/graphviz" graphical diagram module which has an interface for 

integrating images in place of objects.  We added some slight modification for passing two list of 
parameters.  One the list of layers than had CAM plot images, and the second was the list of the 

image files for the CAM plots.  Both lists must be the same length, and for proper diagram 

generation the layer names in the first list should align with the filenames in the second list.  The 
code is under open source license and found at https://github.com/rklepetko/MiCAM.gitfor easy 

access. 

 

3.2. Dataset-1: MNIST Handwritten Numbers 
 

The MNIST data set, compiled and released by Deng [27], consist of a library of images of hand 
written numerical text.  The 10 image classes are from "0" to "9" and consist 60,000 samples 

from 250 census takers and 250 high school students.  Another set of testing data was compiled 

from a separate group of 250 census and high school students, but comprised of only 10,000 

samples.  We join the two, shuffle them and use 20% of the data for testing, 20% in validation, or 
14,000 of the samples per set, with the remaining used for training.  Each sample was fitted in to 

a 20x20 grid, normalized for shading, and centered on a 28x28 image. For our analysis on deeper 

models, we further up-sampled the image to 75x75 pixels in size. Visual examples of our MNIST 
data are seen in Figure 2.  We use several MNIST samples with the MiCAM diagrams to give us 

a base line on evaluating feature extraction. 

 

 
 

Figure 2.  MNIST Data Samples 
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3.3. Dataset-2: Malware Infected Computer Metric by Process Grids 
 

The second data source is process metric samples taken from virtual machines in a cloud IaaS 

environment. They were application servers arrayed in a LAMP stack hosted web-site. The 
machines were injected with malware halfway through the experiment.  There were 114 

infections each from different malware packages. During the experiment, the server was polled 

for process log samples.  Each sample is for a unique process running on the VM kernel and 
contains a set of M number of metrics per process during a section of time.  Stacking P processes 

that are captured during a single time slice results in the matrix: 

 

𝐗𝑡=

[
 
 
 
 
 

𝑚1 𝑚2    …  𝑚𝑀  
𝑝

1
𝑥𝑚1𝑝1 𝑥𝑚2𝑝1 … 𝑥𝑚𝑀𝑝1

𝑝
2

𝑥𝑚1𝑝2 𝑥𝑚2𝑝2 … 𝑥𝑚𝑀𝑝2

⋮        ⋮        ⋮        ⋱    ⋮       
𝑝

𝑃
𝑥𝑚1𝑝𝑃 𝑥𝑚2𝑝𝑃 … 𝑥𝑚𝑀𝑝𝑃]

 
 
 
 
 

 

 
Our initial research was identifying how order of nonnatural data within the grid affects 

performance.  We generated ten random rows and ten random columns for 100 options. We also 

identified several structural ordering methods and after examining the mathematical relationships 

within images derived several statistical relationships to see if they provide any improved 
performance. Since objects in images have pixels that are statistically correlated, we use the 

statistical functions used are detailed in Table 3 of Appendix A, at the end of this paper. The 

metric columns calculation were independent per sample, so we used correlation between two 
metrics (Eq. 1), absolute value of correlation (Eq. 3), and one minus the absolute value of the 

correlation, or what we called anticorrelation (Eq. 4) to test a counter hypothesis. 

 
Unlike the independent metric columns, process rows calculations were dependent between 

samples, so the correlation function (Eq. 2) was derived per metric for a pair of processes. A sum 

of the correlation between two processes (Eq. 5) was used as the base process relationship 

function, from which we also derived an absolute correlation (Eq. 6) and anticorrelation (Eq. 7) 
relationship functions. 

 

 
 

Figure 3.  Correlated Rows & Columns (left) And Anticorrelated Rows & Columns(right) Benign & 

Infected Samples 

 

These functions are then processed through the ordering algorithm, shown in Algorithm 1 found 
within the Appendix A which generates the ordering for each row or column along an axis. It can 

been seen in the samples ordered with correlation, Figure 3 left, and anticorrelation, Figure 3 

right, our correlation functions generate artificial objects while the anticorrelation disperses them. 
The 35 metrics were expanded through one hot encoding to M = 75 metric columns and we made 

available room in the matrix for as many as P <= 150 process rows.  The 29+ million process 

samples from 114 experiments (malware infections), and consisted of 31,064 grids, about half of 
which are considered infected.  The experiments were split between 60% training, 20% 

validation, and 20% testing.  The entire sample set for each experiment was included in the group 
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it was assigned, so no experiment was split between training, validation, and testing. Every 
training and test set was reorganized among the 252 different ordering schemes we generated.  

We test all of our samples on several models, identified the best and worst ordering schemes 

(Table 6 in Appendix A) for each CNN model we trained, and then analysed the results of the 

best and worst ordering schemes with MiCAM. 
 

3.4. Dataset-3: CIC-IDS-2017 Raw IP Data with Attack Vectors 
 

The CIC-IDS-2017 data set has captured live, raw IP traffic that is intentionally subjected to 

various forms of attack vectors. There were 12 attack classes, ten of which were of a sizable 

sample. The sample count and break down by class is included with the results in Table 1 found 
in the next section. This traffic is compiled by session, with the sessions labeled benign or by 

attack class. Each packet in the session has the physical layer of the IP packet stripped, the first 

fourteen bytes, and only the following 160 bytes kept.  If the original packet wasn't 174 bytes 
long, the remaining portion of the 160 bytes are supplied with zeros.  The first ten packets of the 

session are then compiled in order of transmission, and if there aren't ten packets, the remaining 

are filled with zeros. The result is a 10x160 byte grid.   
 

This is the basic single sample from the data set before it is reorganized into a 40x40 square. The 

current order of this gird is IP specification for the columns and transmission time for rows.  

Transmission time is a natural order, an instance in a sequence, but IP specification, human 
defined, is a nonnatural order. Is IP specification the best order? Will statistical correlation on the 

data be a high performing order? These are secondary questions this study is trying to resolve. 

 
To test these hypothesis we first generated 100 random column ordering schemes to process and 

compare.  Since the calculations between bytes are independent per sample we used the function 

Eq. 1 and the ordering algorithm shared in Algorithm 1, both found within the Appendix A.  To 
diversify the number of ordering options available to analyse we used correlation relationships 

within different data subsets.  The first data set was total of all samples.  Next, we separate 

between the benign and maleficent and use the correlation of each of these data subsets.  We then 

extract each of the attack types as subsets and generate correlated orderings from each of these.  
The idea is to see if it is possible to focus on a specific artificial objects by re-arraigning the order 

to match the correlation generated from that subset sample type.  We also generate an absolute 

value of the correlation (Eq. 3) and anticorrelation (Eq. 4) orderings for each of the datasets.  
 

This resulted in 146 ordering schemes to analyse. After reordering, the samples were then 

translated into a 40x40 grid by splitting the 160 bytes into four sections and stacking them on top 

of each other in order.   We randomly reordered the samples and split them into 60% training, 
20% validation, and 20% testing sets.  We cover the evaluation in the next section. 

 

4. EVALUATION 
 

4.1. MiCAM and MNIST 
 

The resulting MiCAM plots are large when compared to other CAM plots.  They are usually 
vertically aligned following the model layout as the CNN is constructed.  Since not only the 

convolutional layers, but the pooling, adding and concatenation layers, along with the final flatten 

and dense layers at the end of the convolutional stages are all plotted, the combined plot contains 
a visual representation of each layer.  For example, DenseNet-121, with 121 convolutional layers 

has a total of 429 individual layers within the model.  For brevity the diagrams are not all 
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included but can be found on GitHub at:  https://github.com/rklepetko/MiCAM.git. We do share 
snapshots of elements that illuminate the value of this visualization tool.   

 

 
 

Figure 4.  MiCAM Plots of LeNet-5 (left one) and MiCAM Plot Clips of ResNet-18(right three) analysing 

an MNIST sample”7” 

 
To start we examine the LeNet-5 MiCAM plot (Left side of Figure 4) which clearly shows how 

the convolution layers build the identifying features.  Examining the dense layers closely it can 

be seen the variation in the colour pixelintesities relate to specific features the network has 

identified.   
 

 
 

Figure 5.  Clips of MiCAM Plot from a DenseNet-121 analysing anMNIST sample”7” 

 

It is even clearer when examining ResNet-18 MiCAM plot (the right three plots of Figure-4) as 

we display the top, or input stages, the middle of the model, and the final bottom or decision 

layers. It's seen in these graphs how the residual links re-introduce features extracted from earlier 
layers. It can also be viewed within the final layers how the ResNet-18 network collapses the 

number of extracted features to relatively few, 40, as compared to LeNet-5 which was 20736. 
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Figure 6.  MiCAM Plots of the Lower Quarter for the LeNet-5 Best (left) andWorst (right) Orderingof 

Samples Benign #212 and Infected #214 

 

 
 

 
Figure 7.  MiCAM Plots of Pooling and Last Convolution Layers for the ResNet-5Best (left) and Worst 

(right) Ordering of Samples Benign #212 and Infected #214 

 

Examining the DenseNet-121 MiCAM plot of the same sample (Figure 5), we choose to share 49 
of the 429 layers. From left to right we include the details of the input layers, the first and last 

dense connection before the first bottleneck, the three bottle neck stages, and the final decision 

layers. In the dense connection plots, the reintroduction of the input stages initial features (outline 

of a "7") is visible as the data cascades through all the way to the first bottleneck stage, 
maintaining a higher level of details for feature extraction precision. We can also see that it is 

these bottle neck layers that are compiling the features for discrimination later.  
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Table 1.  Sample Counts by Class Set and Analysis Results by Order. 

 

 
 

4.2. MiCAM and Malware Infections 
 
As mentioned in the previous section, we use MiCAm to analyse the difference between the best 

and worst ordering schemes (Table 6 in Appendix A) when searching for malware. Between the 

LeNet-5 MiCAM plots we found the pooling layers to have the most distinguishing 
characteristics. It is visible in Figure 6 which is divided by the best and worst ordering schemes.  

We can see how the features are better defined in the pooling layers with the stronger intensities, 

and the range on the infected sample of the best order is noticeably larger in the second pooling 
layer than the worst order. 

 

Within the ResNet-18 plots we see a number of items to take notice of in Figure 7.  Several of the 

CAM plots are identifying clusters of data points they have some significance on the decision. In 
particular the B4 residue convolution layers and associated additions and activation layers, 

highlighted in yellow, perhaps point to particular data points the CNN identifies as maleficent or 

benign. Also noticed is that the features from the best ordering are distinct in the final pooling 
layers for the benign and infected samples, highlighted orange, but the worst order displays those 

layers as having similar features by comparison. 

Column Order 

Sample Set Count % Corr ABS Anti Corr ABS Anti

Bot 1228 0.151% 99.54% 99.58% 99.57% -0.36% 6.98% 6.58%

DDoS 44918 5.539% 99.61% 99.65% 99.55% 14.19% 22.21% 1.70%

DoS Hulk 5952 0.734% 99.58% 99.57% 99.53% 7.86% 5.70% -3.04%

DoS 

Slowhttptest 4216 0.520% 99.54% 99.59% 99.56% -0.27% 9.00% 3.60%

DoS sloworis 3872 0.477% 99.46% 99.55% 99.66% -18.97% 1.98% 25.29%

FTP - Patator 3974 0.490% 99.59% 99.55% 99.52% 8.93% 0.34% -5.35%

Infiltration 6 0.001% 99.59% 99.61% 99.64% 9.57% 13.52% 21.20%

PortScan 158410 19.534% 99.57% 99.55% 99.57% 4.51% 0.13% 4.48%

SSH-Patator 2978 0.367% 99.59% 99.56% 99.54% 9.82% 3.71% -0.19%

Web Attack - 

Brute Force 1363 0.168% 99.61% 99.57% 99.48% 14.67% 5.37% -15.16%

Web Attack - 

Sql Injection 12 0.001% 99.61% 99.59% 99.55% 15.33% 10.09% 0.84%

Web Attack - 

XSS 625 0.077% 99.58% 99.48% 99.52% 8.80% -13.74% -6.56%

Malfecient 227554 28.060% 99.56% 99.57% 99.53% 2.98% 6.30% -4.36%

Benign 583411 71.940% 99.52% 99.54% 99.51% -6.38% -0.55% -6.81%

Total 810965 100% 99.59% 99.59% 99.57% 10.95% 9.63% 6.47%

Average 

Improvement - - - - - 5.44% 5.38% 1.91%

Sample

Random Average

Internet Protocol Specification

Prec/Recal mAP Improve/Degrade

99.545% 0%

99.703% 34.675%
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To keep this report within the space limit, we are not displaying the DenseNet-121 graphs, but 
they are available at the Git site mentioned earlier. Things to note, the CAM plots most relatable 

to the source data are the last convolution stage before the first bottle neck stage. We see a 

number of highlighted pixels of interest for the different classifications. In particular we notice a 

highlighted row within the best ordering scheme for an infected sample, perhaps informing us 
that we have an infected process on that row. 

 

4.3. MiCAMand IP Attacks 
 

One of the unique details this study considers relevant is analysing the affect that order has on 

nonnatural data, and one data set, the CIC-IDS-2017 raw IP-traffic data, poses a scenario to tests 
our hypothesis. As described previously, we devised 146 different columns related ordering 

schemes, and compare them with the results when using the order devised using the IP-

specification as a scheme. We trained a shallow LeNet-3 CNN model (2 convolution and one 
dense layer), matching previously published research and the results are found in Table 1. They 

include the PR curve mAP for every non-random ordering scheme we devised including a 

percentage of improvement over the average mAP for all of the randomly generated schemes.  
We include a breakdown of the results in our conclusion section. 

 
Table 2.  Best and Worst Ordering Schemes for Maleficent IP-Traffic. 

 

 
 

To analyse the differences between the best and worst ordering schemes with the MiCAM 

diagrams, we identified them and include their details in Table2. 

 

 
 

Figure 8.  MiCAM Plots of LeNet-3 Analysing Best Order (IP Spec) IP Packets with Benign and 

Maleficent Packages 

 

Examining the MiCAM plots, in Figures 8 and 9, we can see how the best order has a wider 

range, with the peak negative values showing very distinct regions within the convolutional 
layers.  Also in both orders, in several layers it shows the first quarter of the sample is significant 

in finding the maleficent sample's attack vector, while several areas within the packet are 

identified significant in the benign. 

CNN Best Column mAP Worst Column mAP

Architecture Order Score Row Order Score

Lenet-3 (10 Epoch) IP Specification 99.70% Random-40 99.45%
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Figure 9.  MiCAM Plots of LeNet-3 Analysing Worst Order (Randon-40) IP Packets with Benign and 

Maleficent Packages 

5. CONCLUSIONS 
 
The MiCAM diagrams offer more detail regarding feature extraction within the CNN models.  

They visually expose the layers allowing the user to further understand the intensities of the 

features extracted within the CNN structure. We've seen and identified several capabilities that 
allow us to further compare how minor variation in a model or process can affect feature 

extraction. This offers an additional tool for engineers as they tailor CNN models to non natural 

cybersecurty applications. We used CAM plots that normalized the sum of activation maps with 

the filters weights for the individual map, but one could enhance this tool to include other CAM 
variations, and better methods for displaying the one dimensional (flatten and dense) layers. 

 

There is some processing cost related to generating the MiCAM plots. We went to some length to 
take advantage of the graphics engine by plotting all of the pixels within a single layer at one 

time which greatly improved the rendering speed. 

 
When comparing the CIC-IDS-217 dataset ordering schemes, counter our hypothesis, the 

ordering scheme derived when following the IP specification exceeded expectations out 

performing all other ordering options. This shows the care to which IEEE specification was laid 

to logically organize the data packets as they relate to each other.   
 

It is also interesting to note that the majority of the ordering schemes devised around a statistical 

relationship between data bytes within subsets of the data also performed better than average.  
The surprise regarding the subsets was the correlation of the benign samples. Only two other 

correlation subsets showed a major degradation in performance compared to the random average, 

and those sample sizes were less than one percent of the total samples. The benign correlation 

had 70% of the samples, but resulted in more than a 6% degradation. Focusing on benign samples 
to find maleficent actors proved detrimental. These findings support our hypothesis that statistical 

correlation does produce a better than average precision, as long as the data subset that the 

correlation is taken from has enough maleficent samples. 
 

It's also notable that although anticorrelation ordering did have some significant improvement for 

some subsets, the majority of the subsets showed a poorer performance. Absolute value of 
correlation produced only one significantly detrimental ordering using a subset, which comprised 
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of less than 1/10th of 1% of the total samples, so appears to be a relativity safe when using with a 
shallow network. 

 

To further our understanding on how order affects CNN performance when analysing non-natural 

data, we plan on continuing our research by:  
 

 UsingMiCAM to further analyse the differences in CNN model response when 

comparing ordering schemes. 

 Identifying other security and nonsecurity datasets on which to test ordering hypothesis 

and techniques. 

 Integrating the CNN feature extraction with other models to see if order can improve 
performance of ML hybrids. 
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APPENDIX-A 
 

In Table 3on the next page are the equations we presented as ordering foundations in our 
previous research and test MiCAM analysis with in this study.  They are used as parameters for 

ordering Algorithm 1 found on the following page.  
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Table 3.  Detailed Set of Statistical Relationship Functions. 

 

Equation 1:  Metric/Byte Column Statistical Correlation Function 

 

𝜌𝑚𝑖 𝑚𝑗 = 
𝐸(𝑥𝑚𝑖𝑥𝑚𝑗) −  𝐸(𝑥𝑚𝑖)𝐸(𝑥𝑚𝑗)

√𝐸(𝑥𝑚𝑖
2 ) − 𝐸(𝑥𝑚𝑖)

2 − √𝐸(𝑥𝑚𝑗
2 ) − 𝐸(𝑥𝑚𝑗)

2

 

 

Equation 2:  Process Row Statistical Correlation Function 
 

𝜌𝑚𝑘 𝑝𝑖 𝑝𝑗 = 
𝐸(𝑥𝑚𝑘 𝑝𝑖  𝑥𝑚𝑘 𝑝𝑗) −  𝐸(𝑥𝑚𝑘 𝑝𝑖)𝐸(𝑥𝑚𝑘 𝑝𝑗)

√𝐸(𝑥𝑚𝑘 𝑝𝑖
2 ) − 𝐸(𝑥𝑚𝑘 𝑝𝑖)2 − √𝐸(𝑥𝑚𝑘 𝑝𝑗

2 ) − 𝐸(𝑥𝑚𝑘 𝑝𝑗)2

 

 

Equation 3:  Metric/Byte Column ABS-Correlation Function 

𝜌𝐴𝐵𝑆 𝑚𝑖 𝑚𝑗 = |𝜌𝑚𝑖 𝑚𝑗| 

 

Equation 4:  Metric/Byte Column Anticorrelation Function 

𝜌𝐴𝑁𝑇𝐼 𝑚𝑖 𝑚𝑗 = (1 − |𝜌𝑚𝑖 𝑚𝑗|) 

 

Equation 5:  Process Row Correlation (Sum) for All Metrics Function 

𝜌𝑆𝑈𝑀 𝑝𝑖 𝑝𝑗 = ∑ 𝜌𝑚𝑘 𝑝𝑖 𝑝𝑗

𝑀

𝑘=1

 

 

Equation 6:Process Row ABS-Correlation for All Metrics Function 

𝜌𝐴𝐵𝑆 𝑝𝑖 𝑝𝑗 = ∑|𝜌𝑚𝑘 𝑝𝑖 𝑝𝑗|

𝑀

𝑘=1

 

 

Equation 7:  Process Row Anticorrelation for All Metrics Function 

𝜌𝐴𝑁𝑇𝐼 𝑝𝑖 𝑝𝑗 = ∑(1 − |𝜌𝑚𝑘 𝑝𝑖 𝑝𝑗|)

𝑀

𝑘=1

 

 

Equation 8:  Metric/Byte Column Total Relationship Function 

𝜌𝑇𝑂𝑇 𝑚𝑖 = ∑(𝜌𝑚𝑖 𝑚𝑗)

𝑀

𝑗=1

 

 

Equation 9:  Process Row Total Relationship Function 

𝜌𝑇𝑂𝑇 𝑝𝑖 = ∑(𝜌𝑆𝑈𝑀 𝑝𝑖 𝑝𝑗)

𝑃

𝑗=1
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Algorithm 1: Derive Statistical Relationship Order. 

 

Following that are two tables which are the results from our previously published VM Malware 

analysis but are now using with MiCAM.  The first (Table 4) is the PR curve mAP results from 

the various ordering schemes.  The second is (Table 5) the percentage of improvement (or 
degradation) over the observed average.  The last (Table 6) shows the best and worst performing 

ordering schemes that we use to analyse with MiCAM. 

 
Table 4.  Mean AUC for Precision Recall Curves for Malware Analysis. 

 

 
 

Table 5.  Percentage Improvement over Average (Mean) Performance for Malware Analysis. 

 

 
 

 
 

 

CNN All Correlated ABS-Corr Anti-Corr Correlated ABS-Corr Anti-Corr

Architecture Options Rows Rows Rows Columns Columns Columns

LENET-5 (20 epoch) 99.550% 99.680% 99.580% 99.090% 99.590% 99.600% 99.440%

ResNet-18 89.850% 87.020% 86.560% 94.530% 91.240% 89.230% 95.130%

DenseNet-121 99.530% 99.700% 99.430% 99.200% 99.600% 99.520% 99.560%

CNN 100% minus Correlated ABS-Corr Anti-Corr Correlated ABS-Corr Anti-Corr

Architecture All Mean Columns Columns Columns Rows Rows Rows

LENET-5 (20 epoch) 0.450% 8.889% 11.111% -24.444% 28.889% 6.667% -102.222%

ResNet-18 10.150% 13.695% -6.108% 52.020% -27.882% -32.414% 46.108%

DenseNet-121 0.470% 14.894% -2.128% 6.383% 36.170% -21.277% -70.213%

For features along an axis, fi, define a function, 𝜌𝑓𝑖 𝑓𝑗∀ 𝑖, 𝑗; 

From 𝜌𝑓𝑖 𝑓𝑗define 𝜌𝑇𝑂𝑇 𝑓𝑖 ∀ 𝑖; 

Create a selection pool of features P ∋fi; 

WhileP ≠ Ø do: 
 Create and empty bidirectional queue Q for features fi; 

 Find max(𝜌𝑇𝑂𝑇 𝑓𝑖 ) ∀fi∈P; 

 Place corresponding feature fmax(ρ) onto Q; 

 Remove feature fmax(ρ) from P; 

 Create two pointers left, L, and right, R; L, R∈Q; 

 Point L and R towards fmax(ρ) in Q; 

 WhileP ≠ Øandnot(STOP) do: 

  If ∃𝜌𝑓𝐿 𝑓𝑖 ∀fi∈P or ∃𝜌𝑓𝑅 𝑓𝑖 ∀fi∈Pthen: 

   Find max(𝜌𝑓𝐿 𝑓𝑖 , 𝜌𝑓𝑅 𝑓𝑖 ) ∀fi∈P; 

   Place new feature fmax(ρ) next to the appropriate fL or fR on Q; 

   Remove new feature fmax(ρ) from P; 
   Move the appropriate pointer L and R towards the new fmax(ρ) in Q; 

  Else: 

   Stack current queue Q into final ordered axis V; 
   STOP; 

  End if else; 

 End while; 

End while; 
 

Result: A vector V of features fi that are ordered by the relationship function 

𝜌𝑓𝑖 𝑓𝑗 . 
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Table 6.  Best and Worst Ordering Schemes for Malware Analysis by CNN Model. 
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CNN mAP mAP

Architecture Row Order Column Order Score Row Order Column Order Score

LENET-5 (20 epoch) Correlated Random-5 99.82% Anticorrelated Random-2 98.64%

ResNet-18 Random-1 Random-9 99.99% Random-1 Original 50.31%

DenseNet-121 VMPID Random-1 99.87% ABS-Correlated Random-5 96.36%

Best Combined Worst Combined
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